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Abstract. This paper examines the finite plane-strain deformations of a thick semicircular shell which is held fixed
along its base and is loaded symmetrically by a rigid plate. The shell is composed of an elastic fibre-reinforced
composite material in which the fibres reinforce the shell in the circumferential direction. The composite is as-
sumed to be an ‘ideal’ material which is inextensible in the fibre direction and is incompressible. The deformations
are followed through to the final collapsed state of the shell. An application of these results in the case of an
under-inflated vehicle tyre is considered.
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1. Introduction

This paper considers the finite plane-strain deformation of a long cylinder with a cross-section
in the form of a thick semicircular shell (see Figure 1).

The two faces E′E and OO′ of the shell are assumed to be rigidly bonded to a fixed base
and the deformation is produced by symmetrically loading the plate P′P, so that it remains
parallel to E′O′ and gradually squashes the shell. This may be thought of as the cross-section
of a tyre on a wheel of infinite radius where the wheel rims hold the tyre in place across
E′E and OO′ and the road surface is P′P. We shall assume the shell undergoes a plane-strain
deformation with no extension in the axial direction. The material of the cylindrical shell is
assumed to be a fibre-reinforced composite material in which one family of fibres reinforce
the shell in the circumferential direction and lie entirely within the cross-section. The effect
of the fibres is to make the mechanical response of the composite highly anisotropic with the
local fibre direction taking the role of the preferred direction. We shall assume the material
is a fibre-reinforced material in which the fibres are continuously distributed throughout the
material and deform with it. In general, it is very difficult to solve problems for anisotropic
elastic materials. This problem also involves finite deformations and solutions in finite elasti-
city are often only possible when the material has a simple constitutive relation. However,
the idealising assumptions due to Spencer, Rogers and Pipkin that the fibres are inextensible
and the material is incompressible permit relatively straightforward solutions to a wide class
of problems. Obviously the applicability of this theory is limited to materials for which the
extensional modulus in the fibre direction and the bulk modulus are large compared with the
in-plane shear modulus of the material, and the mode of deformation is largely a shearing
mode.

∗ From 1.8.98 Division of Theoretical Mechanics, School of Mathematical Sciences.



46 A. H. England

Figure 1. The initial configuration.

The properties of such ideal fibre-reinforced materials have been derived in the monograph
by Spencer [1] and in a series of papers by Spenceret al. [2], Pipkin and Rogers [3], Pipkin
[4], Rogers [5], Spencer [6] and are summarised in Section 2. The important kinematic results
governing all finite plane deformations are

1. fibres which are initially parallel remain parallel throughout the deformation;
2. the normal distance between any pair of parallel fibres is the same at all points along that

pair, and the fibres remain that same distance apart during the entire deformation history.

This idealised model has permitted Bradfordet al. [7], Englandet al. [8, 9, 11], Rogerset al.
[12] and Gregoryet al.[13], to find the solutions to a series of problems involving large plastic
as well as elastic deformations.

The stress in an ideal material is given by

σ = −p(I − aa)+ T aa + S(an+ na)+ T33kk, (1.1)

in dyadic notation, wherep and T are the reaction stress components introduced by the
constraints of incompressibility and inextensibility, respectively, andS is the shear stress.
We denote the current fibre direction by the unit vectora and denote the unit vector normal to
a fibre in the plane of the deformation byn, wherek is normal toa andn. The reaction stress
T33 in thek direction maintains the plane-strain configuration.

In this paper we consider a fibre-reinforced material with an elastic matrix in which the
shear stressS satisfies the uniaxial stress-strain relation for loading and unloading under
simple shear so that

S = Gγ. (1.2)

HereG is the elastic shear modulus and it has been shown in the papers cited above that the
shear strainγ at a point is related to the angle between the current normal directionn and the
initial normal directionN at that point, (see Section 2).

Treloar [14] has observed that there is a linear shearing response of the form (1.2) in rubber,
even at very large elastic deformations. More recently, Nakajima and Kurashige [15] have
experimentally verified the ideal theory for elastic deformations of fibre-reinforced rubbers in
the low-load range and proposed a modified constitutive relation with the addition of a cubic
term inγ for the shear stress for large elastic deformations.
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Figure 2. (a) The initial configuration; (b) The deformed configuration.

Rogers and Pipkin [16] have investigated the lateral compression of a fibre-reinforced
pressurised hollow tube by two smooth rigid parallel plates. They employ the idealised theory
described above and restrict attention to elastic deformations. They briefly interpret their res-
ults in terms of the mechanics of vehicle tyres. England and Gregory [17] have extended this
work to the loading of elastic-plastic tubes.

In Section 2 we investigate the kinematics of the deformation. The next section describes
the elastic deformation of the shell for ‘small’ loads. In Sections 4 and 5 we describe the
progressive flattening of the elastic shell under an increasing load applied to the plates using
a minimum-energy method. The final section applies this theory to the deformation of an
under-inflated vehicle tyre.

2. Kinematics

We consider a long straight semicircular shell with internal radiusR0 and wall thicknessh,
and employ the system of polar coordinates(R,2) to describe the undeformed body where
R0 6 R 6 R0 + h, 0 6 2 6 π . (see Figure 2a). We suppose the faces E′E, OO′ of the shell
are held fixed and it is squashed by a rigid plate P′P which remains parallel to E′O′ with the
normal force on the plate equal to 2W per unit length in the axial direction (see Figure 2b).
We assume that the deformation is a plane-strain deformation with no extension in the axial
direction.

The shell is assumed to be reinforced by a continuous distribution of inextensible fibres
that initially lie on the semicirclesR = constant. Since the problem is symmetrical about CC′,
we will restrict consideration to the right-hand half OCC′O′ of the body.

The kinematic results derived by Pipkin, Rogers and Spencer and summarised in Spencer
[6] show that, for plane deformations, the fibres which lie on the circlesR = constant deform
into a family of parallel curves in which the distance apart of any pair of fibres is conserved.
In addition, the orthogonal trajectories of these fibres form straight lines, which we shall refer
to as normal lines. Hence, if contact is assumed to be maintained between the section C′B′ of
the outer edge fibre and the plate P′P, all fibres under the contact region are straight and that
section of the tube deforms into the rectangular region CBB′C′ bounded by the normal lines
CC′ and BB′.
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We suppose the radial lines2 = 0 and2 = π/2 map into the normal lines OO′ and CC′,
respectively, in the deformed body. Note that these lines contain the same material points in
the undeformed and deformed configurations. By symmetry there is no shearing stress across
the line CC′. The displacement is zero at all points on OO′. The boundary conditions on the
faces OC and O′C′ correspond to the imposition of zero tractions at all points on OC and O′B′
together with a displacement condition along B′C′.

Since the displacement is zero on OO′, as the shell deforms we must assume a fan region
forms adjacent to OO′ with its centre at O′ having the (unknown) fan angle6 FO′O= α. As
the loadingW increases we will expectα to increase.

Consider the fibre NMPQ which is at radiusR0+ ξ in the undeformed configuration. This
deforms into the fibre NMPQ which is at the distanceξ from the inner boundary OBC of
the deformed body. Suppose the normal line through the material point P meets the inner
boundary at A, then AP= ξ . Let the arclength OA bes(φ) and denote the angle of inclination
of AP to OO′ byφ. Then(s, φ) form the intrinsic coordinates for the inner surface of shell and,
since all fibres are parallel to the inner surface, determine the shape of the shell. If the point P
denotes the same material point on the fibre in the undeformed and deformed configurations,
since the fibre is inextensible, conservation of the length NP implies

(R0+ ξ)2 = (h− ξ)α +
∫ φ

−α

(
ds

dφ
+ ξ

)
dφ = (h− ξ)α + ξ(φ + α)+ s(φ)− s(−α)

but, s(−α) = hα, and hence when P lies in the curved section of the shell

(R0+ ξ)2 = s(φ)+ ξφ. (2.1)

Similarly, if Q lies in the straight section of the shell at lengthx from CC′, then

(R0+ ξ)21 = (R0+ ξ)π/2− x. (2.2)

If M is a point in the fan region OO′F then

(R0+ ξ)23 = −(h− ξ)φ3, (2.3)

where the normal line MO′ is inclined at the (negative) angleφ3 to OO′.
Equations (2.1), (2.2) and (2.3) provide a relation between the current(ξ, φ) coordinates

of a particle and its initial coordinates(R0+ ξ,2).
The amount of shear strainγ at a particle can be shown to have the form (see Rogers and

Pipkin [16])

γ = φ −2, (2.4)

whereφ is the angle of inclination of the normal line through that particle after deformation.
Further we note that2 is the angle of inclination of the normal line in the undeformed
configuration, using the result that, by symmetry, the shear strain is zero on each point on
CC′.

The shear strain at the point P in the curved section of the shell is then

γ = φ − s(φ)+ ξφ
R0+ ξ = R0φ − s(φ)

R0+ ξ (2.5)
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and at Q in the straight section of the shell,

γ = π/2−21 = x

R0+ ξ , (2.6)

and at M in the edge fan

γ = φ3− θ3 = (R0+ h)φ3

R0+ ξ . (2.7)

These shear strains may be used to determine the shear stress at each point of the shell.

3. The elastic solution

In the case of purely elastic deformations the shear stressS is specified in terms of the
shear strainγ by means of a constitutive relation of the formS = S(γ ), which we have
approximated in this work by the linear shear stress – shear strain relation (1.2) namely

S = Gγ. (3.1)

The remaining terms in the constitutive relation (1.1) are the unknown reaction stresses
p, T andT33 which are determined from the equilibrium equations. It may be shown that
there is a sufficient generality in the system so that any kinematically admissible plane-strain
deformation is also statically admissible. However, not every kinematically admissible de-
formation corresponds to a state of minimum potential energy. This criterion has been used
by Pipkin [18] and by England, Rogers and Bradford [8] to determine the unique elastic
deformation field in certain beam problems.

It will become necessary for us to employ the minimum potential energy technique in due
course but, for the time being, we can determine the solution using the more straightforward
force resultant method. This solution may also be obtained as a special case of Section 4.

The force resultant method examines the equilibrium of a portion of the body, for example
OAA ′O′ on Figure 2b. If the reaction forces exerted on the body across OO′ areW(α) upwards
and the shear forceX(α) to the left, then the component of the resultant force acting along the
direction AA′ leads to the equilibrium equation

−
∫ h

0
S(γ )dξ +W(α) sin φ −X(α) cosφ = 0 (3.2)

for the section OAA′O′. But the shear stress at the heightξ on AA′ has the value

S(γ ) = G(R0φ − s(φ))
R0+ ξ (3.3)

from (2.5), and hence (3.2) reduces to

−G(R0φ − s(φ)) log

(
1+ h

R0

)
+W(α) sin φ −X(α) cosφ = 0. (3.4)

This means that the intrinsic equation of the inner surface FB is given by the equation

s(φ) = R0φ −W ∗(α) sin φ +X∗(α) cosφ, (3.5)
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where the arclength OA iss(φ) andφ is the angle of inclination of AA′ and

G∗ = G log

(
1+ h

R0

)
, W ∗(α) = W(α)/G∗, X∗(α) = X(α)/G∗. (3.6)

If the applied loadW(α) is specified, thenW ∗(α) is known, but the fan angleα and the
reaction forceX(α) remain to be determined from the kinematic conditions on the problem.
It turns out to be simpler to specify the fan angleα and to determine the loadW(α) and
the reaction forceX(α) in terms ofα and the notation used indicates this dependence onα.
Since the arclengths(φ) is defined by (3.5), at the pointF

s(−α) = hα, (3.7)

which reduces to

X∗(α) cosα +W ∗(α) sin α = (R0+ h)α. (3.8)

If we denote the length C′B′ of the region of contact bỳ(α) then

s(1
2π)+ `(α) = R0

1
2π (3.9)

and hence, from (3.5),

`(α) = W ∗(α). (3.10)

Since the line OO′ does not move as the body deforms, thex-coordinate of C relative to O has
the value−R0. Hence

h(1− cosα)+
∫ π/2

−α
(−) sin φs′(φ)dφ − `(α) = −R0.

Performing the integral and using (3.10), we findX∗ andW ∗ satisfy

−X∗(α)(1
2π + α − sin α cosα)+W ∗(α)(2− cos2 α) = 2(R0+ h)(1− cosα). (3.11)

HenceX∗(α) andW ∗(α) satisfy the simultaneous equations (3.8) and (3.11), with the solu-
tions

X∗(α) = (R0+ h)[α(2− cos2 α)− 2 sin α(1− cosα)]/D(α),
W ∗(α) = (R0+ h)[2 cosα(1− cosα)+ α(1

2π + α − sin α cosα)]/D(α), (3.12)

whereD(α) = cosα + (1
2π + α) sin α.

It is simple to confirm that these scaled forces are monotonically increasing functions of
α. Similarly, from (3.10), the contact length̀(α) increases monotonically withα.

The deflectiond(α) of inner surface CB of the shell is given by

R0− h sin α −
∫ π/2

−α
cosφs′(φ)dφ (3.13)
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and hence has the value

d(α) = −(R0+ h) sin α + 1
2X
∗(α) cos2 α + 1

2W
∗(α)(1

2π + α + sin α cosα). (3.14)

Again, this may be shown to be a monotonically increasing function ofα. Hence from (3.6),
(3.12) and (3.14) the load versus deflection curve can be found in terms of the parameterα for
this elastic shell and is given later on Figure 5.

Similarly, given the intrinsic equation for the inner surface of the shell (Equation(3.5)), we
can evaluate the coordinates of the point A from the integrals

x(φ, α) = h(1− cosα)−
∫ φ

−α
sin φs′(φ)dφ

y(φ, α) = h sin α +
∫ φ

−α
cosφs′(φ)dφ

and construct the deformed shape of the shell.

Figure 3. The deformed shapes withh/R0 = 0·5 and
the fan angles1

12π and 1
6π .

Figure 4. The scaled loadW∗(α)/R0 and reaction
X∗(α)/R0 as functions of the fan angleα.

The deformed shapes for a thick shell withh/R0 = 0·5 are given in Figure 3 when the fan
angleα has the value1

12π and 1
6π .

It turns out that there is an upper limit on the value of the fan angleα for which these
formulae apply. If the angleα is increased, it is found that the curvature of the inner surface
drops to zero at some point between F and B, so that the inner surface develops a cusp. The
curvature is given by

s′(φ) = R0−W ∗(α) cosφ −X∗(α) sin φ

= R0− (X∗2(α)+W ∗2(α))1/2 sin(φ + ε).
This quantity is first equal to zero when

X∗2(α)+W ∗2(α) = R2
0,

which defines the angleα = αC at which a cusp first appears. The value ofαC depends on
the thickness of the shell and takes the valueαC = 0·558 whenh/R0 = 0·5, and the value
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αC = 0·8567 whenh/R0 = 0·1. The formulae derived in this section only hold over the range
06 α 6 αC .

The scaled load, reaction, and load versus deflection curves for the thick shell case
h/R0 = 0·5 are given in Figures 4 and 5. The results for the thin shell are given on Figure 12.

Figure 5. The scaled loadW∗(α)/R0 and reaction
X∗(α)/R0 as functions of the deflection/R0.

Figure 6. The collapsed configuration for the thick
shellh/R0 = 0·5.

For a sufficiently thick shell the final ‘collapsed’ configuration has the form given on
Figure 6. If the fan angle is denoted byαF , then the arclength along the inner surface is

hαF + ` = R0
1
2π (3.15)

and the position of C relative to A implies

h(1− cosαF )− ` = −R0. (3.16)

These equations have a solution forαF in the range 0 6 αF 6 1
2π provided

h/R0 > (π − 2)/(π + 2), i.e. for shells thicker thanh/R0 = 0·222.
For shells thinner than this value, the fan angle in the final collapsed condition requires

further investigation.

4. The central-fan solution

We have seen that, when the fan angleα reaches the critical valueαC, the radius of curvature
of the inner face of the shell drops to zero at one point, indicating the formation of a cusp at
that point. This implies that a fan region develops at that point.

Fan regions are a relatively common occurrence in this ideal theory of elasticity, but
have normally been found to occur with their centre on a line of symmetry or to emanate
from a point force or from points at which the boundary conditions change. To the author’s
knowledge, this is the first occurrence of a ‘free’ fan region in which the position of the fan
is determined as part of the deformation, although Spencer has investigated the motion of a
plastic hinge in an ideal rigid-plastic material and Parker has briefly examined jump conditions
across fans in dynamic flexural deformations of a plate (references are given in Spencer [6]).

It is difficult to establish the system of equations which govern the angle and the position
of this central fan without employing a more sophisticated approach. To find these equations,
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Figure 7. The central and edge fans configuration.

we use a minimum potential energy method which reduces to a problem in the calculus of
variations.

Consider the deformation shown in Figure 7. In addition to the central fan located at D we
have allowed the possibility of an upper-edge fan located at B and a reversed fan located at F.
We denote the angles of inclination of the lines BB1, DD2, DD1 and FF′ to the line OO′ by β,
φ2, φ1 andγ , respectively, so that the fan angle of the upper-edge fan is1

2π − β, the fan angle
of the central fan isφ2− φ1, and that of the reversed fan isα + γ (the line FF′ coincides with
FO′ whenγ = −α).

The strain energy in each of the seven sections consists of the integral over the area of
1
2Gγ

2, where the strainγ can be found as in (2.5), (2.6) and (2.7). For example, the strain
energy in the central fan DD1D2 is

E4 =
∫ φ2

φ1

∫ h

0

1
2G

[
R0φ − s(φ1)

R0+ ξ
]2

ξ dξ dφ

= 1
6G{[R0φ2− s(φ1)]3− [R0φ1− s(φ1)]3}f (h/R0), (4.1)

where

f (h/R0) = 1

R0
log(1+ h/R0)− h

R0(R0+ h). (4.2)

Similarly, the strain energy in the curved region FF′D1D is

E3 =
∫ φ1

γ

∫ h

0

1
2G

[
R0φ − s(φ)
R0+ ξ

]2

[s′(φ)+ ξ ]dξ dφ

= 1
2G log

(
1+ h

R0

)∫ φ1

γ

[s(φ)− R0φ]2 dφ

− Gh

6R0(R0+ h){[R0φ1− s(φ1)]3− [R0γ − s(γ )]3},

wheres = s(φ) is the intrinsic equation of the inner face FD.
The potential energy consists of the total strain energy minus the work done by the external

forceW . This has to be minimised subject to the condition that thex-distance from O to C
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should be−R0, which is an integral constraint. If we attach the Lagrange multiplierX to this
integral constraint the potential energy function for the system becomes

P {s(φ), α, γ, φ1, φ2, β,X, `}
= E1+ E2 + E3+ E4 + E5+ E6 + E7

+W
[
h sin α +

∫ φ1

γ

cosφs′(φ)dφ +
∫ β

φ2

cosφs′(φ)dφ − R0

]

+X
[
`− h(1− cosα)+

∫ φ1

γ

sin φs′(φ)dφ +
∫ β

φ2

sin φs′(φ)dφ − R0

]
, (4.3)

whereE3 andE4 have been defined above,

E1 = G

6
(R0+ h)2

{
h

R0
− log

(
1+ h

R0

)}
α3,

E2 = G

6
f

(
h

R0

)
{[R0γ − s(γ )]3+ [R0α + s(γ )]3},

E5 = G

2
log

(
1+ h

R0

)∫ β

φ2

[R0φ − s(φ)]2 dφ

− Gh

6R0(R0+ h){[R0β − s(β)]3 − [R0φ2− s(φ2)]3},

E6 = G

6
f

(
h

R0

)
{[R0

1
2π − s(β)]3 − [R0β − s(β)]3},

E7 = Gh`3

6R0(R0+ h), (4.4)

wheref (h/R0) is defined in (4.2) and̀ is the length of the contact region.
The boundary conditions on the arclengths(φ) are

s(γ ) = hα, s(φ1) = s(φ2), s(β)+ ` = R0
1
2π, (4.5)

together with the integral constraint that the term multiplyingX in (4.3) must be zero, namely

`− h(1− cosα)+
(∫ φ1

γ

+
∫ β

φ2

)
sin φs′(φ)dφ = R0. (4.6)

Minimisation of the expression (4.3) is equivalent to solving the calculus of variations problem
in which we permit the following independent variations in the functions(φ) (defined on the
intervalsγ 6 φ 6 φ1 andφ2 6 φ 6 β), together with variations in the geometrical constants
α, γ, φ1, φ2, β, ` and in the Lagrange multiplierX, where the loadW is held constant:

s(φ)→ s(φ)+ εη(φ),
α→ α + εα′, . . . , β → β + εβ ′, `→ `+ ε`′, X→ X + εX′.



Finite elastic deformations of a thick semicircular fibre-reinforced shell55

On calculating the first variation of (4.3), subject to the boundary conditions (4.5), the follow-
ing series of equations is obtained.

The Euler–Lagrange equations are identical in the two intervals and reduce to

s(φ) = Rφ −W ∗ sin φ +X∗ cosφ, (4.7)

where

W ∗ = W
/[

G log

(
1+ h

R0

)]
, X∗ = X

/[
G log

(
1+ h

R0

)]
. (4.8)

These equations are identical to (3.5) and (3.6) and represent the equilibrium equations for the
sectorsγ 6 φ 6 φ1 andφ2 6 φ 6 β. The Lagrange multiplierX may be identified with the
horizontal component of the reaction force along OO′.

The other equations which result from this analysis correspond to one equation for each
fan region and the integral constraint. The central-fan equation reduces to

s′(φ2)− s′(φ1) = 1
2(φ2− φ1)[R0φ2 − s(φ2)+ R0φ1 − s(φ1)] (4.9)

with similar equations for the upper fan and the reversed fan (withs′(1
2π) ands′(−α) being

evaluated by substitution in the formula fors′(φ)).
The physical interpretation of this equation is not immediately obvious. The shear strain at

a point in the central fan is(R0φ − s(φ1))/(R0+ ξ). The integral of this along the fibre from
one side of the fan to the other is

1
2(φ2 − φ1)[R0(φ2+ φ1)− s(φ2)− s(φ1)] 1

R0+ ξ , (4.10)

sinces(φ2) = s(φ1). Hence (4.9) states that the jump in the radius of curvature across the tip
of the fan is equal toR0 multiplied by the integral of the shear strain through the tip(ξ = 0)
of the fan.

We can also observe that, from (4.7), the intrinsic equation reduces to

s′′(φ) = R0φ − s(φ) (4.11)

at all points on the inner surface except at the cusp. However, it will be noted thats(φ) and its
derivatives are not defined inφ1 < φ < φ2. If we assume (4.11) holds in this interval as well,
with s(φ) = s(φ1), then integration fromφ1 to φ2 yields the Equation (4.9) again.

In terms ofX∗ andW ∗ the equations corresponding to the three fans become

X∗[(φ2− φ1)(cosφ1+ cosφ2)+ 2(sin φ1− sin φ2)]
+W ∗[−(φ2 − φ1)(sin φ1 + sin φ2)+ 2(cosφ1 − cosφ2)] = 0, (4.12)

2X∗(sin α + sin γ )− 2W ∗(cosα − cosγ ) = (α + γ )[R0(α − γ )+ 2hα], (4.13)

X∗[(1
2π − β) cosβ + sin β − 1] −W ∗[(1

2π − β) sin β − cosβ]
= 1

2R0(
1
2π − β)2. (4.14)
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Figure 8. The upper and lower angles of the central fan expressed as a function ofα (a) h/R0 = 0·5; (b)
h/R0 = 0·1.

In addition, there are the kinematic relations stemming from the boundary conditions (4.5)
and the integral constraint (4.6) which reduce to

X∗ cosγ −W ∗ sin γ = hα − R0γ, (4.15)

X∗(cosφ1 − cosφ2)−W ∗(sin φ1 − sin φ2) = R0(φ2− φ1), (4.16)

X∗[β − φ2+ φ1 − γ − sin β cosβ + sin φ2 cosφ2− sin φ1 cosφ1

+ sin γ cosγ + 2 cosβ]
−W ∗(cos2 β − cos2 φ2+ cos2 φ1 − cos2 γ + 2 sin β)

= 2R0(
1
2π − 1− β − cosβ + cosφ2− cosφ1+ cosγ )− 2h(1− cosα). (4.17)

Equations (4.12) to (4.17) correspond to six equations for the six unknownsX∗, W ∗, γ , φ1,
φ2, β in terms of the parameterα.

In Section 3 we found a central-fan region formed whenα exceed the critical angleαC.
Hence, initially, we are looking for solutions of this system of equations in which the upper
and reversed fans do not exist, so thatβ = 1

2π andγ = −α. In this case (4.13) and (4.14)
are satisfied identically and (4.17) is simplified. Numerical investigation of the four remaining
equations shows that the central-fan anglesφ2 andφ1 change very rapidly withα, whenα just
exceedsαC, see Figure 8. Asα increases further we see thatφ2 increases to12π beforeφ1 has
decreased to−α. This implies that the next region we should examine is that in which the
central-fan comes into contact with the edge of the contact region to make a single wide-angle
upper fan with the fan angle12π − β. We now need to solve the system of Equations (4.14),
(4.15) and (4.17) in whichφ1 ≡ φ2 andγ = −α. These solutions are continuous where the
fans coincide and, in the case of a thick shell, tend to the collapsed solution of Figure 6 as
α→ αF . A reversed fan has not been found so thatγ = −α throughout.
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Figure 9. Deformations of the thick shellh/R0 = 0·5
(a) the cusp; (b) the central fan; (c) the upper fan.

Figure 10. Deformations of the thin shellh/R0 = 0·1
(a) the cusp; (b) the central fan; (c) the upper fan; (d)
the shape whenα = 1

2π .

The corresponding deformations of a thick shell whenαC 6 α < αF are shown in Figure 9.
The final collapsed solution is given on Figure 6.

The (quasi-static) dynamics of the deformation field are that, as the load increases, the
central-fan region moves down the shell towards O. The contact region increases in length
and overtakes the central-fan region to form an upper-fan region, which persists until the
collapsed configuration is reached. For the thin shell the upper-fan solution is reached earlier
and applies for a wider range of values ofα. The corresponding deformations of the thin shell
in the rangeαC 6 α 6 1

2π are given in Figure 10.
The solution whenα = 1

2π is given in Figure 10d. It will be noted that this is not the
final collapsed solution. In fact whenh/R0 = 0·1, the collapsed solution is reached when
α = 1

2π + 0·0492 and the deformation is shown on Figure 11. Note that there is contact
between the upper and lower parts of this segment of the inner surface at just one point. This
is very similar to the run-flat configuration for a vehicle tyre.

It is possible to calculate the load, and the reaction as functions of the fan angleα for these
deformations. The results for a thin shell are given in Figure 12. The load versus deflection
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curve has a similar shape and is given in Section 6. We see that all curves are monotonically
increasing with a slight change in gradient where the nature of the solution changes.

After some considerable manipulation, it may be confirmed that the second variation of the
potential energy is positive, indicating that these deformations are stable equilibrium solutions.

Figure 11. The edge of the collapsed configuration for
the thin shellh/R0 = 0·1.

Figure 12. The scaled loadW∗(α)/R0 and reaction
X∗(α)/R0 as functions of the fan angleα. The cent-
ral fan and upper fan regions are bounded by vertical
lines.

5. The under-inflated tyre problem

The solutions obtained in this paper assume that the internal surface of the shell is unstressed.
This is clearly not the case in a vehicle tyre where the internal pressure plays a major part in
the stiffness of the tyre structure (nor are tyres semicircular in cross-section). In a sequel to this
paper we shall examine the effect of internal pressure and also the effect of a tangential force
on the tyre, which will occur when a vehicle is cornering, using the ideal theory to model the
deformation. The monograph by French [19] describes the very complex technical problems
associated with vehicle tyres and the author is conscious of the sophisticated analytical and
numerical methods that have been used to tackle these problems, (see Clark [20]). However,
it seems not unreasonable to see if the solutions derived in this paper can be used to generate
some quantities of physical interest without too much labour. Given the plane-strain solutions
obtained under these zero pressure assumptions, we can obtain estimates of the load-deflation
behaviour of the tyre and the size and shape of the contact patch between the tyre and the
road. It is convenient to restrict the discussion to the analytical solutions obtain in Section 3,
but the extension to the larger deformations is readily carried out.

Suppose a vehicle wheel has a radiusRW to the base of the tyre and that the cross-section
of the tyre can be modelled as a semi-circular shell with the internal radiusR0 and thickness
h. Consider Figure 13 which represents the deformation of a tyre on the lower half of a wheel.
Let us assume the tyre thickness remains equal toh in the deformation. Figure 13 represents
the deformation the inner surface of the tyre.
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Figure 13. The wheel and tyre. Figure 14. The linearised and exact contact regions
when the maximum deflection is 0·3R0.

Denote the maximum radial deflection of the inner surface bydm. Then the radial deflection
of the radial cross-section OO′B′ of the tyre at distancex from the centre line is equal to

dt (x) = RW + R0− [(RW + R0− dm)2+ x2]1/2. (5.1)

and we seedt (x) = 0 whenx = xm, where

x2
m = (RW + R0)

2− (RW + R0− dm)2. (5.2)

Section 3 provides us with the plane-strain solution for the deflection of the cross-section O′B′
of the tyre, in which the maximum deflection isdt (x). Note this is a plane-strain solution
so that there are out-of-plane reaction stresses which maintain the zero deformation field
perpendicular to O′B′. We can assume that this reaction stress field will be approximately
equal to that of a neighbouring radial section and hence can approximate the deformation
and stress field in the tyre by the plane-strain field in each radial section of the tyre. In fact,
since radial ply tyres are also reinforced in the circumferential direction around the wheel, this
assumption may not be too unreasonable. Hence, for a given value ofdm, we can evaluate the
deflectiondt (x), calculate the fan angleα = α(x) for the deformation of that cross-section
O′B′, find the corresponding load 2W ∗{α(x)} carried by that cross-section and find the width
2l{α(x)} of the contact region.

It is easier to formulate the calculation in terms of the fan angleα, noting that at the edge
x = xm of the contact region the fan angle is zero, and thatα reaches its maximum along
x = 0 where the valueα = αm generates the maximum deflectiondm.

5.1. LINEARISED THEORY

For small fan anglesα, we can linearise the expressions derived in Section 3 to find, from
(3.12), that the half-contact width and the scaled load and reaction forces are

`(α) = W ∗(α) = (R0+ h)πα/2, X∗(α) = (R0+ h)α, (5.3)

and the corresponding deflection is

d(α) = 1
8(R0+ h)(π2− 4)α. (5.4)

If α varies over the range 06 α 6 αm then the maximum deflection is

dm = 1
8(R0+ h)(π2− 4)αm. (5.5)
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The parametric relation between the distancex from the centre line and the fan angle para-
meterα is given by solving (5.1) forx, so that

x2 = (RW + R0− d(α))2− (RW + R0− dm)2, (5.6)

which, for small deflections reduces to

x2 = 2(RW + R0)(dm − d(α)) = (RW + R0)(R0+ h)1
4(π

2− 4)(αm − α), (5.7)

with the maximum distance equal to

xm = {(RW + R0)(R0+ h)1
4(π

2− 4)αm}1/2. (5.8)

Since the half-width of the contact region is` = (R0 + h)πα/2, the shape of the contact
region is given by elimination ofα between (5.7), (5.8) and (5.3) yielding

(RW + R0)(π/2− 2/π)` = x2
m − x2. (5.9)

The (linearised) contact region is shown by the dashed lines on Figure 14, whenRW = 2R0.
The total load carried by the contact region is given by (see Figure 13).

F= 4
∫ x=xm

x=0
G∗W ∗{α(x)} cos(θ)dx (5.10)

= 2G∗(R0+ h)π
∫ α=αm

α=0
α

(
−dx

dα

)
cosθ dα, (5.11)

where cosθ = (1− kαm)/(1− kα) andk = 1
8(R0 + h)(π2 − 4)/(RW + R0). Within the

confines of the linear theory the cosθ term can be taken to be equal to 1. Since the relation
betweenx andα is defined in (5.7) this reduces to the integral

F = 1
2G
∗(R0+ h)π [(RW + R0)(π

2− 4)]1/2
∫ αm

0

α

(αm − α)1/2 dα

= 2
3 G∗(R0+ h)π [(RW + R0)(R0+ h)(π2− 4)]1/2α3/2

m . (5.12)

Hence, in terms of the maximum deflectiondm, the overall force-deflection relation for the
tyre becomes

F= 32
√

2

3

(
π

π2− 4

)
G log

(
1+ h

R

)
(RW + R0)

1/2d3/2
m . (5.13)

This load-deflection relation is reminiscent of the relation

F= 16

3
GR1/2d3/2 (5.14)

for contact between a sphere of radiusR of incompressible material and a rigid plane, which
may be derived from the Hertz theory of contact. In fact (5.13) implies that the force is
approximately 1·5 log(1+ h/R0) times the Hertz theory result.
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Figure 15. The load-deflection relations for the tyre. The loads are scaled byG∗R2
0 and the deflection byR0.

5.2. NONLINEAR RESULTS

We can adopt the same procedures for the parametric analysis derived in Section 3. If we
let α range over the interval 06 α 6 αm, the half contact length̀(α), the scaled load
W ∗(α), reactionX∗(α) and the deflectiond(α) are specified by (3.10), (3.12) and (3.14). The
maximum deflection is given bydm = d(αm). The shape of the contact region is specified
parametrically by the half-width̀(α), from (3.10), which occurs at the distance

x = x(α) = [(RW + R0− d(α))2− (RW + R0− d(αm))2]1/2 (5.15)

from the centre line. The shape of the contact region (for the same value of the maximum
deformationdm = 0·3R0 whereRW = 2R0) is shown on Figure 14, where it is compared with
the linearised theory.

The total load can be expressed as an integral over the contact region in the form

F= 4
∫ xm

0
G∗W ∗ cos(θ)dx. (5.16)

Since we knowW ∗ as a function of the deflectiond(α) = D, thenW ∗(α) = W(D) for each
cross-section and we can write this integral in the form

F = −4G∗
∫ D=dm

D=0
W(D)

RW + R0− dm
RW + R0−D

dx

dD
dD

= 4G∗
∫ D=dm

D=0
x(D)

d

dD

{
W(D)

RW + R0− dm
RW + R0−D

}
dD. (5.17)

The second integral has been obtained by integration by parts. The differentiated expres-
sion in the second integral is reasonably linear, so that we can approximate this expression
by 4πD/(π2 − 4) from the linear relations. Given the form (5.15) forx as a function of
D(= dt (x)) this integral can be evaluated and a second approximate load-deflection curve can
be found for the tyre. It is

F= 8πG∗

(π2− 4)

[
a(a2 − z2)1/2− z2 log

(
a + (a2 − z2)1/2

z

)]
, (5.18)
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Figure 16. The LoadW/GR0 as a function of the deflectiond/R0. (a)h/R0 = 0·1; (b)h/R0 = 0·5; Hill’s results
−−−−−− present results .

wherea = RW + R0, z = RW + R0− dm.
The numerical evaluation of the integral (5.17) is also possible. The two approximate load-

deflection curves for the tyre and the exact one are given on Figure 15. The highest curve
corresponds to the linear approximation (5.13), the next is (5.18) and the lowest curve is the
numerical evaluation of (5.17). It will be noticed that even the linearised form (5.13) gives a
reasonable approximation when the deflections are less than 0·2R0.

6. Discussion

This paper concerns the plane-strain deformation of a fibre-reinforced shell with a semicir-
cular cross-section. The circumferential reinforcement makes the material highly anisotropic
and the deformations are assumed to be large. The idealisations that the fibres are inextensible,
continuously distributed through the material, and that it is incompressible permit a straight-
forward solution to the problem. It is of interest to note that for sufficiently large deformations
a central fan is generated whose position and fan angle is determined by the solution and
change as the deformation increases. To the author’s knowledge this is the first time such a
‘free’ fan has been found in this field.

The initial impetus to examine this problem arose from discussions on finite deformations
of cylindrical shells with Professor J. M. Hill, see Hill [21], [22] and [23]. Hill [23] has found
an approximate solution to this problem by taking an exact finite plane-strain deformation
of a thick semi-circular shell consisting of a Mooney–Rivlin material. The constants in his
solution are used to balance the resultant forces applied across the curved surfaces rather
than the exact stress or displacement boundary conditions which apply at each point of the
curved surfaces. The Mooney–Rivlin material is an incompressible and isotropic material
with the shear modulusG = 2(C1 + C2) and the deformation field used by Hill is rather
different from the exact solution which has been derived for the idealised circumferentially
reinforced material discussed here. Figure 16 gives a comparison between the overall load-
deflection relation derived by Hill ([23], Equation 4.16) and that deduced in this paper. A
surprisingly good measure of agreement is achieved for thin shells(h/R0 = 0·1) with the ap-
proximate Mooney–Rivlin solution predicting a stiffer shell than the fibre-reinforced one when
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h/R0 = 0·5. The point at which the form of Hill’s solution changes and the central fan and
upper fan regions in the present solution are denoted by vertical lines.

The solutions found by Hill are largely buckled solutions. The question of whether the ideal
theory could predict the buckling of a shell has not been addressed in this paper. Following
the work of Hill (see [22, 23]) one might expect the centre line CC′ (see Figure 2b) to move
down and the point C′ to separate from the indentor in a buckled configuration. However,
this configuration can only be achieved by the outer surface C′B′ sliding along PP′ and, if
frictional forces are set up between C′B′ and PP′, it seems unlikely that the resultant reaction
force will be sufficiently great to maintain a buckled region. If, however, the surfaces are
smooth, then the reaction force may be sufficiently large to buckle the section BCC′B′ in
the manner suggested by Pipkin and Kao [24]. This question requires further investigation.
The extension of this work to incorporate the effects of internal pressure, a non-semicircular
cross-section, and transverse forces, with the possibility that these idealised solutions may
provide a relatively straightforward method for evaluating the approximate deformation field
in a vehicle tyre will be examined in a future paper.
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